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Abstract--Some simple examples are presented that lead to both attached and free eddies in two- 
dimensional slow viscous flow. The particular behaviours shown are formed by the combination of 
elementary solutions of the biharmonic equation. 

INTRODUCTION 

There has been considerable interest in recent years concerning the question of the existence of 
separated flows in slow viscous motion. A number of examples have been presented in the 
literature, and a systematic review has been prepared by O'Neill & Ranger (1979). The first time 
a separated flow was displayed was in the paper by Dean (1944), who investigated the flow over 
a particular shaped bump along a wall. Flows with separation had been considered earlier, but 
the streamlines were not computed and the nature of the behaviour not realised. More recently, 
O'Neill & Dorrepaal (1979) discovered the existence of free eddies in considering the flow 
between a pair of circular cylinders, though the circulation between the eddies is extremely 
weak. Further, the geometry of the obstacle was fundamental to the formation of the eddies in 
their work; with the free eddies to be displayed here, it is essentiallythe rotational motion of 
the body that leads to the detachment of the eddy. 

The purpose of this note is to present situations where both attached and free eddies are 
formed in two-dimensional Stokes flow from the combination of elementary solutions of the 
biharmonic equation. Specifically, we investigate the linear shear and uniform stream flows past 
a circular cylinder, combined with fully rotational flows due to a rotation at infinity, plus a 
separate rotation of the cylinder. With such simple behaviour, the details can be computed 
quickly and accurately for many different cases, and a general understanding of when such 
eddies exist can be gained. 

There is always a certain artificiality in two-dimensional Stokes flows that try and model 
behaviour at infinity, and the present study is no exception. A preliminary study of axisym- 
metric flows involving a sphere has not revealed free eddies of such a simple nature as those 
given here; there is the example given by Ranger (1971) of the attached eddy when there is a 
uniform stream past a rotating sphere, and generalizations are possible. With asymmetric flows 
past a sphere, it does appear that a hyperbolic shear flow coupled with a uniform stream in a 
rotating fluid can give rise to free eddies; however, with no simple expression for the stream 
function for these asymmetric flows it is much more difficult to display the eddies. Con- 
sequently, the present study is given in its limited form because of its essential simplicity 
compared to those that have so far been published. 

We define the stream function q4r, 0) in polar coordinates, so that the velocity vector 
v -- -cur l  (4'if); ff is the unit vector parallel to the cylinder axis. The basic equation is then 

F 8 2 1 & 1 8 2 "12 
v,'¢,-= [ ~ + r  Yrr +;~-~J ¢, = o, [l] 

with boundary conditions ~b = Or = 0 or r = 1 when the cylinder is at rest, or ~b = 0, ~br = 
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constant when the cylinder rotates about its axis. The elementary solutions to this equation are 

01 =(r 2- 1-21ogr)-[r2-2+-~]cos20, [2] 

02=[rlogr_2+lJsinO, [3] 

03 = r2 - 1 - 2 log r, [4] 

04 = log r; [5] 

01 represents a linear shear and 02 a uniform stream flow past the circular cylinder, 03 shows 
rotation at infinity with the cylinder at rest and 04 the flow due to the cylinder itself rotating. 

Although 01 satisfies the proper condition v ~ yf at infinity for a shear flow, 02 has a 

logarithmic singularity for the velocity at large distances. However, the work of Proudman & 
Pearson (1957) indicated that the r log r sin 0 behaviour, treated as the outer condition for the 
inner Stokes solution, is correct for the uniform stream. 

Because the governing equation is linear, all combinations 

4 

0 = ~] A,0,(r, 0), [6] 
i=I 

for A,., also satisfy the equation. We now consider different values for A~ that display the 
features of interest. 

R E S U L T S  

We formally present five solutions in detail, on the understanding that they show the 
dominant features. Later, we discuss the range for the constants A; for which these features are 
present, and how they change quantitatively with different values for Ai. 

(a) Xl = 1, A2 = 4, A3 = 21, A4 = 0 
We first consider situations where the cylinder is at rest, and the eddy is attached. Figure 1 

shows the position of the streamline 0 = 0; because there is a symmetry about the y-axis only 
the eddy in the right half-plane is given. The function 0 is negative within the eddy, and 
positive for all other points in the fluid. The separation points on the cylinder are where 
0 -~ 10.5 ° and 0 -~ -43.1°; these are the points where 0rr = 0. The furthest extent of the eddy is 
at r - -  2.47, and the minimum value of 0 is -0.199 at r--- 1.86, 0 =-16 .4  °. 

J 

1 
Figure I. AI = 1, A2=4, A3=~, A4=O. 
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(b))q = 1, A2 = 6, A3 = 1/10, }[4 = 0 

Figure 2 shows the eddy, now much larger than in (a) due, it will be seen, to the combined 
effect of increasing A2 and decreasing (positive) A3. The separation points are where 0-~ 13.3 ° 
and O----78.4 °. It is further seen that Srrr is negative in the neighbourhood of the lower 
separation point, and so the boundary of the eddy curls outward close to the cylinder, although 
it does not extend beyond O = -79.8°; this phenomenon is not present near the other separation 
point. The furthest extent of the eddy is at r--- 17.51, and the minimum value of $ is -9.223 at 
the point r = 8.90, O = -  17.0 °. 

An additional property of interest in the neighbourhood of O = -90  ° can be displayed when 
the constants A~, Aa and A4 are kept fixed, and A2 is slightly increased. For a = 6.1, the lower 
separation point is at -81.8 ° (with the corresponding point in the left half-plane at -98.2°), and 
the bulge in the eddy boundary extends an extra four degrees to -85.8 ° (and -94.2°); for 
A = 6.12 the lower separation point is at -82.7 ° (and -97.3°), with the bulge now extending to 
-88.3 ° (and -91.7°). The two eddies are moving closer together, and coalesce when A2-~ 6.124 
at r =  1.30 along 0 = - 9 0  °. For 6.124<A <6.2 (exactly) there is a distinct eddy with positive 
circulation embedded within the larger (but now single) eddy with negative circulation. The 
streamline patterns for A~=6.12 and A2=6.13 in the neighbourhood of r =  1, 0 = - 9 0  ° are 
shown together in figure 3. As A2 increases within this domain, the eddy where ~ is positive 
decreases in size until it vanishes when A2 = 6.2. 

1 
F igure  2. A~ = I, 3 `2=6  , 3,3 = ]-{~, 3`4=0. 

I 
I 
I 
I 

I 

I 
I 
I 

Figure 3 . - - -  A, = i, A2 = 6.12, A3 = 0.1, 3 ` 4 = 0 - -  3't = l ,  3 ' 2=6 .13 ,  3, 3 = 0 . l ,  3 .4=0 .  
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The separate existence of this small eddy is an interesting feature that does not seem to 
have been noticed before. Mathematically, it is a consequence of the fact that the ratio 

[r2-2+l]/[rlogr-2+l ] 
initially decreases for 1 -< r < 2.13, before then increasing once r > 2.13; each of the other ratios 
that can be formed from the fundamental solutions [2]-[5] are monotonic for all r _-_ 1. 

Some general statements can now be added to indicate the changes in the behaviour as the 
constants A2 and A3 change, (only two of the three are independent, and A~ = 1 is maintained as 
the scaling factor). In the following, we do not put any significance on properties describing 
situations far from the cylinder on the basis that a Stokes flow is an "inner" solution in the 
sense of Proudman & Pearson, and so must be seen mainly as a local description. 

Separation takes place when A22> 64(A3- 1), the bulge appears at the lower separation point 
when 64(.~ 3 q- 1) - Af >/~2{/~.22 Jr- 64(1 - A3)} ~/2, and the two halves of the eddy are fully merged 
when A2>6+2A3; these domains in the A2, A3-plane are represented by the horizontally, 
vertically and cross hatched regions respectively in figure 4. The position of the eddy is 
essentially governed by the value of A2, with the separation points satisfying 16sin 0=  
-A2+-{A22+64(1-A3)}I/2; as A3 increases, for fixed A2, the eddy vanishes where 0= 
-a rc  sin (A2/16). For any fixed A3, the size and circulation of the eddy increase with ,~2. 

(c) A,=I ,  A2=4, A3=~,A4= 
As soon as there is a slight rotation by the cylinder added to example (a), the eddy is swept 

off the cylinder and becomes free. For very small A4, figure 1 would still be appropriate except 
for points in the region close to the surface of the cylinder. When the particular (larger) value 
/~4 = ~ is adopted, the free eddy takes the form given in figure 5. There is a stagnation point S at 
r-~ 1.0791 and 0-~ 14.84°; the streamline sketched is that which passes through S, and is given 
by 4,=0.00726. The maximum extent of the eddy is r-~2.16, and it is contained between the 
radius vectors 0-~-3.5 ° and -28.6 °. The minimum value for ~ is -0.0814, at r-~ 1.74, 
0 - ~ -  16.4 °. The streamline ~ = 0.00726 is distant only 0.0182 from the cylinder at its closest 
point. 

To give an idea of the role of small (positive) rotation by the cylinder, the stagnation point 
equivalent to S is positioned at r = 1 + 31e, 0 = -arcsin (~) when A4 = • "~ I. 

12 L ~ , ~ ' ~ \ \ \ \ \ \ \ \  \ \ ~ /  ~ ' < \ \ \ \ \ \ \ \ \ \ \ \ ~ /  
k \ \ \ \ \ \ \ \ \ \ ~ J  
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Figure 4. Domains for separation (examples A and B). 
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1 I Figure 5. A, = 1, A2 =4, A3 =~, A4--~. 

(d) A,=  1, A2=4, A3=2 i, A 4 = - 5  i 

When the rotation is in the opposite direction, the stagnation points lie on the line of 
symmetry 0 =_+90 °. In the particular case under consideration they are positioned at S, (r  = 

1.0091, 0 = 90 °) and S2(r = 1.0335, 0 = -90°). The boundary of the free eddy is given in figure 6; 
it is the streamline where $ = -0.00331 and passes through $2 given by r--= 1.015 at e = o. A 

typical distance of the streamline from the cylinder is given by r = 1.015 at 0 = 0. The maximum 
extent of the eddy is r = 2.72, and it lies below the arc 0 = 29.5 °. The minimum value for 4, is 
-0 .329 at r = 1.96, 0 ---- - 16.4 °. 

1 1 Figure 6. ~.1 = 1, ~.2 =4, A3=~, A,= -~.  
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The streamline ~b-~-0.00091 passes through S~, and traces a path both inside and outside 
that given in figure 6, but this cannot easily be represented in the diagram. Geometrically, there 
is a saddle point at both S~ and $2. 

(e) Xl = 1, A2 = 6, A3 = ~, /~4 = .L[5 

The eddy boundary is shown in figure 7. The stagnation point is at r-~ 1.509, 0 - ~ -  24.46 °, 
and the streamline through this point is 6-~ 0.443. It is bounded between the arcs 0 = -5 .7  ° and 
-41.7°; the maximum extent is r-~ 14.52. The minimum value for 6 is -4.426 at r - 8 . 4 2  and 
0 = - 17.5 o. 

It is also of interest to consider the effect of a small amount of circulation on the example 

presented in figure 3. It is difficult to present these diagramaticaily because of the closeness of 
the relevant streamlines, and so the following description must suffice. First we take A~ = 1, 
A2 = 6.13, A3 =0.1, A4 =-0 .001 ;  any value A4-<-0.00234 would remove this small eddy al- 
together. The free eddy with positive circulation is bounded by the streamline ~b ~--0.0000039, 
which passes through the stagnation point r-~ 1.0071, 0 = - 9 0  °, and extends no further than 
r-~ 1.16 from the cylinder. The eddy is also bounded by the arcs 18 + 90°1 = 4.1°; the shape is not 
dissimilar from that given in figure 3 when detached from the cylinder. 

When A4 is changed to +0.001 however, the shape of the free eddy does alter considerably 
from figure 3. The dividing streamline ~-~ 0.000000084 now shows a thin lens-like region with 
the cusps being stagnation points at r~- 1.00017, 0 = - 2 2 . 5  ° and -157.5 °. The larger of the two 
arcs cuts 0 = - 9 0  ° at r-~ 1.245, which represents the furthest distance of the boundary from the 
cylinder, and the smaller cuts 0 = - 9 0  ° at r-~ = 1.000084. The maximum value of ~ within the 
free eddy is 0.00035 at r--- 1.127, 0 = - 9 0  °. 

General statements equivalent to those given earlier for the detached eddy are not as simply 
stated when there are three independent parameters; however, when we generalize (e) by 

maintaining (for arithmetic convenience alone) -~4--~ 2(A3 + 1), figure 8 shows the range of the 
parameters A2, A3 for which the free eddy exists. 

To conclude, it can be said that further cases have been considered. When A2 changes sign, 
this serves only to reflect the streamline curves in the x-axis. When A3 < 0 and A4 > 0, no case 
was found where a free eddy exists; changing signs for both A3 and A4 just reverses the 
direction of rotational flow. When - 2 < A3/A~ < 0 in particular, the streamline ~b = 0 extends to 
infinity. 

DISCUSSION 

The main purpose of the present paper is to exhibit these very simple examples of 
separation in Stokes flows that lead to both attached and free eddies. It is hoped that their very 

1 . 11 Figure 7. ,~)= 1, ~.2 = 6, ,~s =~,  a4 = ~-. 



16 

12 

8 

4 

ATTACHED AND FREE EDDIES IN STOKES FLOW 

? 

1 2 3 

Figure 8. Domain for free eddy with ,~4 = 2(A3 + 1) (example D). 
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simplicity, as distinct from the detailed analysis of the previous results, will make the concepts 
more accessible, for it can reasonably be said that the possibility of separation should always be 
considered. The reason separation has not been so seriously considered until recently is in part 
due to the fact that in only a few specific cases have the streamlines been developed. It is hard 
enough to solve the biharmonic equation when two boundaries are present, and harder still to 
determine clearly the position of the streamlines. 

However, it is clear that the combination of ~bl and ~2, representing a displaced shear flow 
(i.e. off the centre line of the cylinder), is the common local flow in the neighbourhood of a 
body. Further, the main role of including small quantities of ~3 is essentially to close the 
streamline at infinity. Therefore, it can be inferred from the general discussion after example (b) 
that separation in linear shear flows past a cylindrical body is indeed a common phenomenon. 
And once rotation (for a circular cylinder), or any general motion of a body in the plane normal 
to its axis is included, a previously attached separation bubble must become detached. 

As an example, Davis & O'Neill (1977) have recently shown the existence of separation in 
the linear shear flow past a circular cylinder close to an infinite flat plate. It is now clear, when 
the cylinder rotates slowly enough, or the plate itself moves slowly in its own plane, that the 
eddies they found attached to the bodies will become free. Other examples can readily be 
developed. 

It can now be argued that the phenomenon of separation will be understood from studies of 
low just as much as high Reynolds number flows, and further specific examples of the former 
need to be developed. 
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